Welcome to pyFlapjack’s documentation!

pyFlapjack

pyFlapjack is our Python package that allows you to interface the Flapjack with Pandas and Numpy stack, so that you can easily implement it in your projects.

_images/Flapjack_Dark.svg

PyPI PyPI - Python Version PyPI - License

Instalation

Installing pyFlapjack is quite simple. Please refer to our Wiki for installation instructions, available here: Installation.

Tutorials

Now that you have pyFlapjack installed you can familiarize yourself with the tool using the Jupyter notebook tutorials designed for this purpose.

Reference this paper

Please reference our Flapjack’s paper–available here, using the following reference: > Guillermo Yáñez Feliú, Benjamín Earle Gómez, Verner Codoceo Berrocal, Macarena Muñoz Silva, Isaac N. Nuñez, Tamara F. Matute, Anibal Arce Medina, Gonzalo Vidal, Carlos Vidal Céspedes, Jonathan Dahlin, Fernán Federici, and Timothy J. Rudge ACS Synthetic Biology 2021 10 (1), 183-191 DOI: 10.1021/acssynbio.0c00554

API Reference

This page contains auto-generated API reference documentation 1.

flapjack

Submodules

flapjack.flapjack
Module Contents
Classes

Flapjack

Attributes

index_params

plot_option_keys

replace_columns_with_ids

class Flapjack(url_base='localhost:8000')
models = ['study', 'assay', 'sample', 'strain', 'media', 'vector', 'dna', 'signal', 'chemical',...
__del__(self)
async _analysis(self, **kwargs)
async _measurements(self, **kwargs)
async _plot(self, **kwargs)
async _upload_measurements(self, df, **kwargs)
analysis(self, **kwargs)
create(self, model, confirm=True, overwrite=False, **kwargs)
delete(self, model, id, confirm=True)
get(self, model, **kwargs)
handle_response(self, s)
log_in(self, username, password)
log_out(self)
measurements(self, **kwargs)
parse_params(self, **kwargs)
patch(self, model, id, **kwargs)
plot(self, **kwargs)
refresh(self)
upload_measurements(self, df, **kwargs)
index_params = ['biomass_signal', 'ref_signal', 'analyte', 'analyte1', 'analyte2']
plot_option_keys = ['normalize', 'subplots', 'markers', 'plot']
replace_columns_with_ids = []
flapjack.simulator
Module Contents
Classes

Simulator

Attributes

colors

class Simulator(study_name='', assay_name='', study_description='', assay_description='', dna_name='', init_proteins=[0], concentrations=[0], n_signals=1, fluo_noise=0.01, od_noise=0.01)
create_data(self, fj, step, n_samples, nt, dt, sim_steps)
create_meta_objects(self, fj)
colors = ['red', 'green', 'blue']
flapjack.util
Module Contents
Functions

exponential_growth(t, y0, k)

exponential_growth_rate(t, y0, k)

fit_curve(func, data, x, y, **kwargs)

gompertz(t, y0, ymax, um, l)

gompertz_growth_rate(t, y0, ymax, um, l)

hill(x, a, b, k, n)

layout_print(fig, width=3.3, height=1.5, font_size=6)

Layout figure optimized for print at 300dpi

exponential_growth(t, y0, k)
exponential_growth_rate(t, y0, k)
fit_curve(func, data, x, y, **kwargs)
gompertz(t, y0, ymax, um, l)
gompertz_growth_rate(t, y0, ymax, um, l)
hill(x, a, b, k, n)
layout_print(fig, width=3.3, height=1.5, font_size=6)

Layout figure optimized for print at 300dpi

fig = figure to layout width,height = size in inches font_size = font size in pts

Returns: fig = figure with correct layout

Package Contents

Classes

Flapjack

Simulator

Functions

exponential_growth(t, y0, k)

exponential_growth_rate(t, y0, k)

fit_curve(func, data, x, y, **kwargs)

gompertz(t, y0, ymax, um, l)

gompertz_growth_rate(t, y0, ymax, um, l)

hill(x, a, b, k, n)

layout_print(fig, width=3.3, height=1.5, font_size=6)

Layout figure optimized for print at 300dpi

Attributes

colors

index_params

plot_option_keys

replace_columns_with_ids

class Flapjack(url_base='localhost:8000')
models = ['study', 'assay', 'sample', 'strain', 'media', 'vector', 'dna', 'signal', 'chemical',...
__del__(self)
async _analysis(self, **kwargs)
async _measurements(self, **kwargs)
async _plot(self, **kwargs)
async _upload_measurements(self, df, **kwargs)
analysis(self, **kwargs)
create(self, model, confirm=True, overwrite=False, **kwargs)
delete(self, model, id, confirm=True)
get(self, model, **kwargs)
handle_response(self, s)
log_in(self, username, password)
log_out(self)
measurements(self, **kwargs)
parse_params(self, **kwargs)
patch(self, model, id, **kwargs)
plot(self, **kwargs)
refresh(self)
upload_measurements(self, df, **kwargs)
class Simulator(study_name='', assay_name='', study_description='', assay_description='', dna_name='', init_proteins=[0], concentrations=[0], n_signals=1, fluo_noise=0.01, od_noise=0.01)
create_data(self, fj, step, n_samples, nt, dt, sim_steps)
create_meta_objects(self, fj)
colors = ['red', 'green', 'blue']
exponential_growth(t, y0, k)
exponential_growth_rate(t, y0, k)
fit_curve(func, data, x, y, **kwargs)
gompertz(t, y0, ymax, um, l)
gompertz_growth_rate(t, y0, ymax, um, l)
hill(x, a, b, k, n)
index_params = ['biomass_signal', 'ref_signal', 'analyte', 'analyte1', 'analyte2']
layout_print(fig, width=3.3, height=1.5, font_size=6)

Layout figure optimized for print at 300dpi

fig = figure to layout width,height = size in inches font_size = font size in pts

Returns: fig = figure with correct layout

plot_option_keys = ['normalize', 'subplots', 'markers', 'plot']
replace_columns_with_ids = []
1

Created with sphinx-autoapi

pyFlapjack

pyFlapjack is our Python package that allows you to interface the Flapjack with Pandas and Numpy stack, so that you can easily implement it in your projects.

_images/Flapjack_Dark.svg

PyPI PyPI - Python Version PyPI - License

Instalation

Installing pyFlapjack is quite simple. Please refer to our Wiki for installation instructions, available here: Installation.

Tutorials

Now that you have pyFlapjack installed you can familiarize yourself with the tool using the Jupyter notebook tutorials designed for this purpose.

Reference this paper

Please reference our Flapjack’s paper–available here, using the following reference: > Guillermo Yáñez Feliú, Benjamín Earle Gómez, Verner Codoceo Berrocal, Macarena Muñoz Silva, Isaac N. Nuñez, Tamara F. Matute, Anibal Arce Medina, Gonzalo Vidal, Carlos Vidal Céspedes, Jonathan Dahlin, Fernán Federici, and Timothy J. Rudge ACS Synthetic Biology 2021 10 (1), 183-191 DOI: 10.1021/acssynbio.0c00554